Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays.
نویسندگان
چکیده
Multielectrode recordings have revealed zero time lag synchronization among remote cerebral cortical areas. However, the axonal conduction delays among such distant regions can amount to several tens of milliseconds. It is still unclear which mechanism is giving rise to isochronous discharge of widely distributed neurons, despite such latencies. Here, we investigate the synchronization properties of a simple network motif and found that, even in the presence of large axonal conduction delays, distant neuronal populations self-organize into lag-free oscillations. According to our results, cortico-cortical association fibers and certain cortico-thalamo-cortical loops represent ideal circuits to circumvent the phase shifts and time lags associated with conduction delays.
منابع مشابه
Mechanisms of Zero-Lag Synchronization in Cortical Motifs
Zero-lag synchronization between distant cortical areas has been observed in a diversity of experimental data sets and between many different regions of the brain. Several computational mechanisms have been proposed to account for such isochronous synchronization in the presence of long conduction delays: Of these, the phenomenon of "dynamical relaying"--a mechanism that relies on a specific ne...
متن کاملZero-lag long-range synchronization via dynamical relaying.
We show that isochronous synchronization between two delay-coupled oscillators can be achieved by relaying the dynamics via a third mediating element, which surprisingly lags behind the synchronized outer elements. The zero-lag synchronization thus obtained is robust over a considerable parameter range. We substantiate our claims with experimental and numerical evidence of such synchronization ...
متن کاملWhen Long-Range Zero-Lag Synchronization is Feasible in Cortical Networks
Many studies have reported long-range synchronization of neuronal activity between brain areas, in particular in the beta and gamma bands with frequencies in the range of 14-30 and 40-80 Hz, respectively. Several studies have reported synchrony with zero phase lag, which is remarkable considering the synaptic and conduction delays inherent in the connections between distant brain areas. This re...
متن کاملZero-Lag Long Range Synchronization of Neurons Is Enhanced by Dynamical Relaying
How can two distant neural assemblies synchronize their firings at zero-lag even in the presence of non-negligible delays in the transfer of information between them? Here we propose a simple network module that naturally accounts for zero-lag neural synchronization for a wide range of temporal delays. In particular, we demonstrate that isochronous (without lag) millisecond precise synchronizat...
متن کاملDynamic control for synchronization of separated cortical areas through thalamic relay
Binding of features and information which are processed at different cortical areas is generally supposed to be achieved by synchrony despite the non-negligible delays between these areas. In this work we study the dynamics and synchronization properties of a simplified model of the thalamocortical circuit where different cortical areas are interconnected with a certain delay, that is longer th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 44 شماره
صفحات -
تاریخ انتشار 2008